AI

Artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals. In computer science AI research is defined as the study of "intelligent agents": any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.[1] Colloquially, the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".[2] The scope of AI is disputed: as machines become increasingly capable, tasks considered as requiring "intelligence" are often removed from the definition, a phenomenon known as the AI effect, leading to the quip, "AI is whatever hasn't been done yet."[3][citation not found] For instance, optical character recognition is frequently excluded from "artificial intelligence", having become a routine technology.[4] Modern machine capabilities generally classified as AI include successfully understanding human speech,[5] competing at the highest level in strategic game systems (such as chess and Go),[6] autonomously operating cars, and intelligent routing in content delivery networks and military simulations. Artificial intelligence was founded as an academic discipline in 1956, and in the years since has experienced several waves of optimism,[7][8] followed by disappointment and the loss of funding (known as an "AI winter"),[9][10] followed by new approaches, success and renewed funding.[8][11] For most of its history, AI research has been divided into subfields that often fail to communicate with each other.[12] These sub-fields are based on technical considerations, such as particular goals (e.g. "robotics" or "machine learning"),[13] the use of particular tools ("logic" or artificial neural networks), or deep philosophical differences.[14][15][16] Subfields have also been based on social factors (particular institutions or the work of particular researchers).[12] The traditional problems (or goals) of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects.[13] General intelligence is among the field's long-term goals.[17] Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, artificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer science, information engineering, mathematics, psychology, linguistics, philosophy, and many others.